12 research outputs found

    New insights into the nature of the circumstellar environment of FU Ori

    Get PDF
    Following a previous successful study, we present new and more complete interferometric observations of FU Orionis. The combination of both IOTA (Infrared and Optical Telescope Array, Mt. Hopkins, AZ) and PTI (Palomar Testbed Interferometer, Palomar Observatory, CA) interferometers allowed an increase in (u, v) coverage and H and K bands measurements. We confirm the presence of a resolved structure around FU Ori that can be interpreted in terms of accretion disk. However, we find significant differences between our results and standard accretion disks models. In particular the temperature power law is best explained if two different radial regimes are used. Moreover, a clear visibility oscillation trend at 110 m is well fitted with a binary (or hot spot) model. This may have important implications on accretion disk models for such objects

    SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems

    Get PDF
    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450 - 900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/22, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (<<25 pc) with masses ranging from a few Jupiter masses to Super Earths (∼\sim2 Earth radii, ∼\sim10 M⊕_{\oplus}) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System

    SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems - From Planetary Disks To Nearby Super Earths

    Get PDF
    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450-900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/2022, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (less than 25 pc) with masses ranging from a few Jupiter masses to Super Earths (approximately 2 Earth radii, approximately 10 mass compared to Earth) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System

    Preliminary SFOM

    No full text
    No abstract availabl

    AFTA-C Introduction and Update

    No full text
    No abstract availabl

    Atmospheric characterization of cold exoplanets using a 1.5-m coronagraphic space telescope

    Get PDF
    High-contrast imaging is currently the only available technique for the study of the thermodynamical and compositional properties of exoplanets in long-period orbits, comparable to the range from Venus to Jupiter. The SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) project is a coronagraphic space telescope dedicated to the spectropolarimetric analysis of gaseous and icy giant planets as well as super-Earths at visible wavelengths. So far, studies for high-contrast imaging instruments have mainly focused on technical feasibility because of the challenging planet/star flux ratio of 10-8-10-10 required at short separations (200 mas or so) to image cold exoplanets. However, the main interest of such instruments, namely the analysis of planet atmospheric/surface properties, has remained largely unexplored. Aims. The aim of this paper is to determine which planetary properties SPICES or an equivalent direct imaging mission can measure, considering realistic reflected planet spectra and instrument limitation. Methods. We use numerical simulations of the SPICES instrument concept and theoretical planet spectra to carry out this performance study. We also define a criterion on the signal-to-noise ratio of the measured spectrum to determine under which conditions SPICES can retrieve planetary physical properties. Results. We find that the characterization of the main planetary properties (identification of molecules, effect of metallicity, presence of clouds and type of surfaces) would require a median signal-to-noise ratio of at least 30. In the case of a solar-type star <10 pc, SPICES will be able to study Jupiters and Neptunes up to -5 and -2 AU respectively, because of the drastic flux decrease with separation. It would also analyze cloud and surface coverage of super-Earths of radius 2.5 Earth radii at 1 AU. Finally, we determine the potential targets in terms of planet separation, radius and distance for several stellar types. For a Sun analog, we show that SPICES could characterize Jupiters (M ≥ 30 Earth masses) as small as 0.5 Jupiter radii at ≤2 AU up to 10 pc, and super-Earths at 1-2 AU for the handful of stars that exist within 4-5 pc. Potentially, SPICES could perform analysis of a hypothetical Earth-size planet around a Cen A and B. However, these results depend on the planetary spectra we use, which are derived for a few planet parameters assuming a solar-type host star. Grids of model spectra are needed for a further performance analysis. Our results obtained for SPICES are also applicable to other small (1-2 m) coronagraphic space telescopes
    corecore